Contents lists available at ScienceDirect

# Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

# Synergistic use of Knudsen effusion quadrupole mass spectrometry, solid-state galvanic cell and differential scanning calorimetry for thermodynamic studies on lithium aluminates

S.K. Rakshit<sup>\*</sup>, Y.P. Naik, S.C. Parida, Smruti Dash, Ziley Singh, B.K. Sen, V. Venugopal

Product Development Section, Radiochemistry and Isotope Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

#### ARTICLE INFO

Article history: Received 31 December 2007 Received in revised form 5 March 2008 Accepted 9 March 2008 Available online 16 March 2008 Keywords: Breeder material Lithium aluminate Knudsen effusion method Solid-state galvanic cell Differential scanning calorimetry (DSC) Heat capacity

#### ABSTRACT

Three ternary oxides LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s) in the system Li–Al–O were prepared by solidstate reaction route and characterized by X-ray powder diffraction method. Equilibrium partial pressure of CO<sub>2</sub>(g) over the three-phase mixtures {LiAl<sub>5</sub>O<sub>8</sub>(s)+Li<sub>2</sub>CO<sub>3</sub>(s)+5Al<sub>2</sub>O<sub>3</sub>(s)}, {LiAl<sub>5</sub>O<sub>8</sub>(s)+5LiAlO<sub>2</sub>(s)+2Li<sub>2</sub> CO<sub>3</sub>(s)} and {LiAlO<sub>2</sub>(s)+Li<sub>5</sub>AlO<sub>4</sub>(s)+2Li<sub>2</sub>CO<sub>3</sub>(s)} were measured using Knudsen effusion quadrupole mass spectrometry (KEQMS). Solid-state galvanic cell technique based on calcium fluoride electrolyte was used to determine the standard molar Gibbs energies of formations of these aluminates. The standard molar Gibbs energies of formation of these three aluminates calculated from KEQMS and galvanic cell measurements were in good agreement. Heat capacities of individual ternary oxides were measured from 127 to 868 K using differential scanning calorimetry. Thermodynamic tables representing the values of  $\Delta_{\rm f}$ H<sup>0</sup>(298.15 K), S<sup>0</sup>(298.15 K) S<sup>0</sup>(T), C<sup>0</sup><sub>p</sub>(T), H<sup>0</sup>(T), {H<sup>0</sup>(T)-H<sup>0</sup>(298.15 K)}, G<sup>0</sup>(T),  $\Delta_{\rm f}$ H<sup>0</sup>(T) and free energy function (fef) were constructed using second law analysis and FACTSAGE thermo-chemical database software.

© 2008 Elsevier Inc. All rights reserved.

# 1. Introduction

Thermodynamic properties

Lithium-aluminum-oxygen system has four ternary oxides: LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s), Li<sub>3</sub>AlO<sub>3</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s); however, Li<sub>3</sub>  $AlO_3(s)$  is reported to be unstable above 670 K [1,2]. Among these oxides, LiAlO<sub>2</sub>(s) has gained importance for its potential use as breeder material in the irradiation blanket for future nuclear fusion reactors due to its chemical and thermal stability as well as less radiation damage [3]. This oxide exists in three possible allotropes, hexagonal  $\alpha$ -LiAlO<sub>2</sub> up to 673 K, monoclinic  $\beta$ -LiAlO<sub>2</sub> from 673 to 1073 K and tetragonal  $\gamma$ -LiAlO<sub>2</sub>, the most stable form at temperature greater than 1073 K. This aluminate is also used as an inert and non-conductive ceramic matrix to contain molten carbonate electrolyte between the anode and the cathode of molten carbonate fuel cells due to its high mechanical and thermal stability [3–5]. This aluminate is also expected to be less reactive with cladding materials presently used in fusion reactors due to lower vapor pressures and higher melting points than solid Li<sub>2</sub>O. Many researchers have carried out the preparation, decomposition and thermal studies of LiAlO<sub>2</sub>(s) [6,7] but studies on other aluminates in Li–Al–O system are very scarce. Ikeda et al. [1] have studied the vaporization and thermo-chemical stability of lithium aluminates using high-temperature Knudsen effusion mass spectrometry. Many researchers have reported the enthalpy and heat capacity values of LiAlO<sub>2</sub> from 298 to 1700 K [8]. Kleykamp [8] has reported the heat capacity of LiAlO<sub>2</sub>(s). In this study, thermodynamic properties of LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s) were determined using Knudsen effusion quadrupole mass spectrometry (KEQMS), solid-state galvanic cell based on CaF<sub>2</sub> solid electrolyte and differential scanning calorimetry (DSC).

# 2. Experimental

## 2.1. Materials preparation

Ternary oxides,  $\text{LiAl}_5O_8(s)$ ,  $\text{LiAlO}_2(s)$  and  $\text{Li}_5\text{AlO}_4(s)$ , were prepared using conventional solid-state reaction route using pre-heated powder samples of  $\text{Li}_2\text{CO}_3(s)$  and  $\text{Al}_2\text{O}_3(s)$  (LEICO Industries Inc., mass fraction 0.9999). The individual powders were weighed according to their stoichiometric ratios and mixed homogeneously using an agate mortar and pestle and the resultant powder samples were pelletized using a steel die at a pressure of 100 MPa. The pellets were initially heated at 900 K for 50 h in air in a re-crystallized alumina crucible and then cooled, reground and again pelletized. These pellets were then heated at





<sup>\*</sup> Corresponding author. Fax: +91 22 2550 5151.

*E-mail addresses:* swarupkr@barc.gov.in, swarup\_kr@rediffmail.com (S.K. Rakshit).

<sup>0022-4596/\$ -</sup> see front matter  $\circledcirc$  2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2008.03.003

1150 K for 48 h. The resultant samples were characterized by X-ray powder diffraction (XRD) technique using DIANO XRD with Cu- $K\alpha$  radiation and graphite monochromator and found to be pure crystalline phases of LiAl<sub>5</sub>O<sub>8</sub>(s),  $\gamma$ -LiAlO<sub>2</sub>(s) and  $\beta$ -Li<sub>5</sub>AlO<sub>4</sub>(s).

Three-phase mixtures {LiAl<sub>5</sub>O<sub>8</sub>(s)+Li<sub>2</sub>CO<sub>3</sub>(s)+5Al<sub>2</sub>O<sub>3</sub>(s)}, {LiAl<sub>5</sub>O<sub>8</sub>(s)+2Li<sub>2</sub>CO<sub>3</sub>(s)+5LiAlO<sub>2</sub>(s)} and {LiAlO<sub>2</sub>(s)+2Li<sub>2</sub>CO<sub>3</sub>(s)+Li<sub>5</sub>AlO<sub>4</sub>(s)} for KEQMS were prepared by homogeneously mixing the individual pre-heated compounds in stoichiometric ratios and pelletized using a steel die and then sintered at 700 K to remove moisture. The sintered pellets were broken into small pieces and loaded inside the Knudsen cell.

According to the phase relations in the  $Li_2O-Al_2O_3$  pseudobinary system, phase mixtures: { $2LiAl_5O_4(s)+5Al_2O_3(s)+2LiF(s)$ }, { $5LiAlO_2(s)+LiAl_5O_4(s)+4LiF(s)$ } and { $Li_5AlO_4(s)+LiAlO_2(s)+4LiF(s)$ } were also prepared by homogenously mixing the pre-heated individual powders and pelletized using a steel die at a pressure of 100 MPa and sintered at 800 K for 10 h under moisture and hydrogen-free oxygen atmosphere. These sample pellets were then used for solid-state galvanic cell experiments. Powder samples of LiAl\_5O\_8(s), LiAlO\_2(s) and Li\_5AlO\_4(s) were used for DSC.

#### 2.2. Knudsen effusion quadrupole mass spectrometry (KEQMS)

The Knudsen effusion mass spectrometric technique is one of the most informative methods for vaporization processes and thermodynamic properties of high-temperature systems. Generally, for thermodynamic measurements, traditional magnetic sector mass spectrometer attached to Knudsen effusion system is preferable among quadrupole and time-of-flight mass spectrometers. Murray et al. [9] have shown that thermodynamic data obtained by Knudsen effusion technique using magnetic sector spectrometer and quadrupole mass spectrometer are in good agreement for pure chromium and chromium-silicon samples. However, quadrupole mass spectrometer has no significant advantages over magnetic mass spectrometer but they are very compact and relatively inexpensive. Stolyarova et al. [10] have reported that quadrupole mass spectrometer coupled to Knudsen cell can effectively be used for thermodynamic studies at high temperature.

In this study, a residual gas analyzer (RGA) coupled to Knudsen effusion system was used for equilibrium partial pressure measurements. An RGA is a quadrupole mass spectrometer in which the ionizer is immersed in the gas to be analyzed, and the ionizer is characterized by an open construction in which the gas may enter and leave in all directions. It is assumed that the gas is homogenous and that changes in the gas density with time occur slowly enough such that the instrument is always in equilibrium with the gas. This instrument can be used to identify the kind of molecules present in the gaseous phase and, when calibrated, can be used to determine concentrations or partial pressures [11–13] of individual species.

The KEQMS used in this study is an in-house designed Knudsen vacuum chamber and arranged in such a way that it allows reciprocally perpendicular molecular beam from the Knudsen effusion cell. The Knudsen vacuum chamber was heated to the desired temperature using resistance heater. The temperature near the Knudsen cell was measured using a pre-calibrated (ITS-90) chromel-alumel thermocouple. The Knudsen cell used was made of 15 mol% calcia stabilized zirconia (CSZ) with a thin cylindrical orifice of dia 0.8 mm and height 0.2 mm at the centre of the lid. This setup is used only for partial pressures measurements of permanent gaseous species such as CO, O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, etc. and not for condensable vapor species. A shutter is placed between the ionizer and the Knudsen effusion chamber such that it does not

come into the path of the molecular flow. The shutter isolates the Knudsen effusion cell while recording the background signal.

The detected signal  $(I_i^+)$  measured using Faraday cup detector is related to the partial pressure of the vapor species  $(p_i)$  by

$$p_i = K_{\rm inst} I_i^+ T / (\sigma_i a_i) \tag{1}$$

where  $K_{\text{inst}}$  is the instrumental constant,  $I_i^+$  is the measured ion current in ampere, *T* is the absolute temperature near the Knudsen cell,  $\sigma_i$  is the electron impact cross-section and  $a_i$  isotopic abundance of the specific ion. Eq. (1) can be represented as

$$\ln p_i = \ln K_{\text{inst}} + \ln(I_i^+ T) - \ln \sigma_i - \ln a_i$$
<sup>(2)</sup>

For permanent gaseous species such as CO<sub>2</sub> at mass, m = 44,  $\ln \sigma = -45.52$  at 30 eV [14] and the isotopic abundance as 100%, Eq. (2) can be expressed as

$$\ln P_i = \ln K_{\text{inst}} + \ln(l_i^+ T) + 45.52 \quad \text{(for } i = \text{CO}_2\text{)}$$
(3)

#### 2.2.1. Calibration of KEQMS

Prior to calibration of the instrument, the background signals were monitored by heating the Knudsen chamber with empty Knudsen cell at different temperatures from ambient to 1161 K at pressure level  $\sim 1 \times 10^{-5}$  Pa. The background signals as a function of temperature are shown in Fig. 1. It is evident from the figure that the background signals corresponding to H<sub>2</sub><sup>+</sup>, N<sub>2</sub><sup>+</sup>, CO<sup>+</sup> and CO<sub>2</sub><sup>+</sup> do not change appreciably with change in temperature. During experiments, the actual signals were obtained by subtracting the ion intensities due to background.

The instrument calibration constant ( $K_{inst}$ ) was determined by measuring the ion intensities of  $CO_2^+$  over the phase mixtures of {CaCO<sub>3</sub>(s)+CaO(s)}, {SrCO<sub>3</sub>(s)+SrO(s)}, {BaCO<sub>3</sub>(s)+BaO(s)} and {Li<sub>2</sub> CO<sub>3</sub>(s)+Li<sub>2</sub>O(s)}. Three different ionization energies (30, 50 and 70 eV) were used to measure the ion intensities of  $CO_2^+$  to check the linearity of pressure measurements. However, 30 eV is sufficient to ionize all types of gaseous molecules; hence, the actual experiments were carried out at ionization energy of 30 eV. Prior to actual measurement, a particular phase mixture (mass ~1 g) was loaded inside the Knudsen cell and then heated at 700 K for 4 h under high vacuum to remove the moisture and other unwanted gaseous species.

# 2.2.2. Partial pressure measurements of CO<sub>2</sub>(g) over equilibrium phase mixtures

Huang et al. [15] have reported the thermodynamic data of  $Na_4Fe_6O_{11}(s)$  by measuring the partial pressure of  $CO_2(g)$  over  $\{2Na_2CO_3(s)+3Fe_2O_3(s)\}$  phase mixture using Knudsen effusion mass spectrometry from 918 to 1013 K. Similar approach was adopted in this study to determine the Gibbs energies of formation of LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s) by measuring the partial pressure of  $CO_2(g)$  over the equilibrium phase mixtures  $\{LiAl_5O_8(s)+Li_2CO_3(s)+5Al_2O_3(s)\}, \{LiAl_5O_8(s)+2Li_2CO_3(s)+5LiAlO_2(s)\}$  and  $\{LiAlO_2(s)+2Li_2CO_3(s)+Li_5AlO_4(s)\}$ .

The ion intensities of  $CO_2^+$  over these equilibrium phase mixtures were measured using KEQMS. For each measurement, two sets of experiments were carried out and the ion intensities for other gaseous species were in background level during the measurement. Subsequently, partial pressures of carbon dioxide,  $p(CO_2)$  over the phase mixture were obtained using Eq. (3). After the mass spectrometric measurements, the resultant phase mixtures were analyzed by XRD technique and found to be the mixture of corresponding lithium aluminate, lithium carbonate and alumina. Therefore, it was assumed that the following equilibrium reactions were established inside the Knudsen cell under experimental conditions:

$$Li_2CO_3(s) + 5Al_2O_3(s) = 2LiAl_5O_8(s) + CO_2(g)$$
(4)



Fig. 1. Background spectrum of the mass spectrometer with blank Knudsen cell as a function of temperature.

 $LiAl_5O_8(s) + 2Li_2CO_3(s) = 5LiAlO_2(s) + 2CO_2(g)$ (5)

 $LiAlO_2(s) + 2Li_2CO_3(s) = Li_5AlO_4(s) + 2CO_2(g)$ (6)

Therefore, the measured  $p(CO_2)$  corresponds to the equilibrium partial pressures of the above reactions.

# 2.3. Solid-state galvanic cell technique with CaF<sub>2</sub> electrolyte

The experimental setup and the cell assembly used in this study have been explained in details by Rakshit et al. [16]. A schematic diagram of the fluoride cell used in this experiment is shown in Fig. 2. Optical grade single crystal of  $CaF_2(s)$  pellet of 6 mm diameter and 3 mm thickness (supplied by Solon Technologies, Inc., USA) was used as fluoride ion conducting electrolyte. It is a single compartment cell with provisions for passing purified oxygen gas during the experiment and to measure the temperature of the cell near the electrode/electrolyte interface. Highpurity oxygen gas at one atmospheric pressure was allowed to pass through successive traps of silica gels, molecular sieves, oxidized form of BTS catalyst and anhydrous magnesium perchlorate for removal of traces of  $H_2(g)$  and moisture. The reference electrode, the electrolyte and the sample electrode stacked one over the other was kept in the isothermal temperature zone of a Kanthal wire wound furnace. The furnace temperature was controlled within  $\pm 1$  K using a PID temperature controller. The cell was standardized using phase mixtures of  $\{CaO(s)+CaF_2(s)\}\$  and  $\{MgO(s)+MgF_2(s)\}\$  as two standard electrodes. The cell can be represented as

 $\begin{array}{ll} \label{eq:cell_I: (-)Pt, O_2(g, 101.3 \ kPa)/\{CaO(s) + CaF_2(s)\}//CaF_2(s)//\{MgO(s) + MgF_2(s)\}/O_2(g, 101.3 \ kPa), \ Pt(+). \end{array}$ 

After standardization, the reversible emf's of the following solid-state galvanic cells were measured as a function of temperature.

*Cell II* : (-)Pt, O<sub>2</sub>(g, 101.3 kPa)/{CaO(s) + CaF<sub>2</sub>(s)}//CaF<sub>2</sub>(s) //{LiAl<sub>5</sub>O<sub>8</sub>(s) + Al<sub>2</sub>O<sub>3</sub>(s) + LiF(s)}/O<sub>2</sub>(g, 101.3 kPa), Pt(+);

 $\begin{array}{l} \mbox{Cell III: (-)Pt, } O_2(g, \ 101.3 \ kPa)/\{CaO(s) + CaF_2(s)\}//CaF_2(s)//\{LiAlO_2(s) + LiAl_5O_8(s) + LiF(s)\}/O_2(g, \ 101.3 \ kPa), \ Pt(+); \end{array}$ 



**Fig. 2.** Schematic diagram of the fluoride cell. (1) Pt lead wires, (2) alumina pressing tube, (3) thermocouple, (4) stainless-steel flange, (5) gas inlet, (6) gas outlet, (7) spring, (8) quartz tube; (9) quartz tube, (10) alumina cup, (11) Pt discs, (12) kanthal wire wound furnace, (13) reference electrode, (14) CaF<sub>2</sub>(s) electrolyte and (15) sample electrode.

Cell IV : (-)Pt, O<sub>2</sub>(g, 101.3 kPa)/{Li<sub>5</sub>AlO<sub>4</sub>(s) + LiAlO<sub>2</sub>(s) + LiF(s)}//CaF<sub>2</sub>(s)//{CaO(s) + CaF<sub>2</sub>(s)}/O<sub>2</sub>(g, 101.3 kPa), Pt(+).

The cell temperature close to the electrodes was measured using a pre-calibrated (ITS-90) chromel–alumel thermocouple. The cell emf ( $\pm 0.02 \text{ mV}$ ) was measured by using a Keithley 614

electrometer (input impedance  $> 10^{14} \Omega$ ). At low temperatures, stable values of emf were obtained approximately after 72 h whereas at successive higher temperatures, stability in emf values was observed within 5–6 h. The reversibility of the solid-state electrochemical cells was evaluated by micro-coulometric titration in both directions. The electrode pellets after the emf measurements were re-examined by XRD analysis and the phase compositions were found unchanged.

# 2.4. Measurement of heat capacity using differential scanning calorimetry

Molar heat capacity measurements were carried out using a heat flux-type DSC (131, Setaram Instrumentation, France). The temperature and energy calibrations and the methods of heat capacity measurements by continuous heating mode were described in details by Rakshit et al. [16]. In order to check the accuracy of the measurement, heat capacity of Fe<sub>2</sub>O<sub>3</sub> (mass fraction 0.9999, Alfa Aesar, USA) was measured in the temperature range from (i) 130 to 320 and (ii) 310–860 K. The values of heat capacity of Fe<sub>2</sub>O<sub>3</sub>(s) were found to be within  $\pm 2\%$  compared to the literature values [17]. The pre-heated powder samples of LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s) were used for heat capacity measurements.

# 3. Results and discussion

## 3.1. KEQMS technique

#### 3.1.1. Calibration of KEQMS (Kinst)

The ion intensities of CO<sub>2</sub><sup>+</sup> over the phase mixtures {CaCO<sub>3</sub>(s)+ CaO(s)}, {SrCO<sub>3</sub>(s)+SrO(s)}, {BaCO<sub>3</sub>(s)+BaO(s)} and {Li<sub>2</sub>CO<sub>3</sub>(s)+ Li<sub>2</sub>O(s)} were recorded in ampere using Faraday cup detector as a function of temperature for two different runs. The values of ln( $K_{inst}$ ) were calculated as a function of temperature using Eq. (3), literature values of ln{p(CO<sub>2</sub>)/Pa} [17] and experimentally measured ln( $I_i^+T$ ) values and represented in Table 1. The calibration constant calculated at 30 eV for {Li<sub>2</sub>CO<sub>3</sub>(s)+Li<sub>2</sub>O(s)} phase mixture was used for further calculation and is expressed as

$$\ln(K_{\text{inst}}) = 3711.9/(T(K)) - 47.05 \quad (614 \le T(K) \le 750)$$
(7)

An ideal instrument has a sensitivity that is constant and independent of pressure. The ion current reaching the detector of such an instrument should, therefore, increase linearly with pressure. The sensitivity of the experimental system was checked by plotting the detected signals (ampere) as a function of literature values of partial pressure of  $CO_2(g)$  over the respective carbonate-oxide phase fields and shown in Fig. 3. This figure shows that the detected ion currents varies linearly as a function of partial pressure of  $CO_2(g)$  throughout the measurement range.

3.1.2. Equilibrium partial pressures over the ternary phase mixtures 3.1.2.1. The phase mixture { $LiAl_5O_8(s)+Li_2CO_3(s)+5Al_2O_3(s)$ }. The ion intensities of  $CO_2^+$  peak over { $LiAl_5O_8(s)+Li_2CO_3(s)+5Al_2O_3(s)$ } phase mixture was measured at 30 eV ionization energy in the temperature range 614–750 K. Partial pressures of  $CO_2(g)$ ,  $p(CO_2)$ , at different temperatures for two different runs were calculated using the measured ion intensities, Eq. (3) and the calibration constant from Eq. (7) and the values are listed in Table 2. The variation of logarithmic values of  $p(CO_2)$  as a function of reciprocal of temperature follows linear relationship as shown in Fig. 4 and can be expressed as

$$\ln\{p(\text{CO}_2 (\text{Pa})) = -18412.1(\pm 260.2)/(T (\text{K})) +24.44(\pm 0.38)$$
(8)

The enthalpy change associated with reaction (4) at the average temperature of the measurement was estimated to be  $\Delta_{r(4)}H_m^0(682 \text{ K}) = (153.1 \pm 2.2) \text{ kJ mol}^{-1}$ . The standard molar Gibbs energy of formation ( $\Delta_f G_m^0$ ) of LiAl<sub>5</sub>O<sub>8</sub>(s) from the elements was calculated from Eqs. (4) and (8) and the values of  $\Delta_f G_m^0(T)$  for Li<sub>2</sub>CO<sub>3</sub>(s), Al<sub>2</sub>O<sub>3</sub>(s) and CO<sub>2</sub>(g) from the literature [17] and can be represented as

$$\Delta_{\rm f} G_{\rm m}^0({\rm LiAl_5O_8, s}, T) \, \text{kJ} \, \text{mol}^{-1} = -4522.2 + 0.8725 \, (T \, (\text{K})) (\pm 2.4) \, (614 \leqslant T \, (\text{K}) \leqslant 750)$$
(9)

3.1.2.2. The phase mixture {LiAl<sub>5</sub>O<sub>8</sub>(s)+2Li<sub>2</sub>CO<sub>3</sub>(s)+5LiAlO<sub>2</sub>(s)}. The ion intensities of CO<sub>2</sub><sup>+</sup> peak over the phase mixture {LiAl<sub>5</sub>O<sub>8</sub>(s)+ 2Li<sub>2</sub>CO<sub>3</sub>(s)+5LiAlO<sub>2</sub>(s)} was measured at 30 eV ionization energy in the temperature range 604–723 K. Partial pressures of CO<sub>2</sub>(g),  $p(CO_2)$ , at different temperatures for two different runs were calculated using the measured ion intensities, Eq. (5) and the calibration constant from Eq. (7) and the values are listed in Table 2. The variation of logarithmic values of  $p(CO_2)$  as a function of reciprocal of temperature follows linear relationship as shown in Fig. 4 and can be expressed as

$$ln\{p(CO_2 (Pa)) = -18064.8(\pm 365.5)/(T (K)) + 25.27(\pm 0.55)$$
(10)

Table 1

| Ion intensities of CO <sub>2</sub> <sup>+</sup> | at different ion | energies over | different phase | mixtures |
|-------------------------------------------------|------------------|---------------|-----------------|----------|
|-------------------------------------------------|------------------|---------------|-----------------|----------|

| Phase                                                    | Ionization energy (eV) | Combined $\ln(I_i^*T)$ of two runs                       | ln( <i>P<sub>i</sub></i> /atm) literature [15] | Temperature range (K             |
|----------------------------------------------------------|------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------|
| CaCO <sub>3</sub> (s)+CaO(s)                             | 30<br>50<br>70         | -25191.1/T+18.44<br>-26090.3/T+21.10<br>-25452.4/T+20.28 | -21093.3/T+18.53                               | 604-772<br>617-764<br>622-781    |
| SrCO <sub>3</sub> (s)+SrO(s)                             | 30<br>50<br>70         | -28649.7/T+16.16<br>-30706.4/T+19.48<br>-29566.4/T+19.37 | -28792.7/T+19.85                               | 832–951<br>833–978<br>835–939    |
| BaCO <sub>3</sub> (s)+BaO(s)                             | 30<br>50<br>70         | -33203.1/T+17.64<br>-32296.9/T+18.28<br>-32531.8/T+19.17 | -31664.9/T+19.57                               | 821–1055<br>822–1056<br>838–1043 |
| Li <sub>2</sub> CO <sub>3</sub> (s)+Li <sub>2</sub> O(s) | 30<br>50<br>70         | –29594.2/T+19.17<br>–26523.2/T+16.78<br>–26677.2/T+17.40 | -25882.3/T+17.64                               | 688-887<br>676-885<br>686-889    |



Fig. 3. Ion intensities of CO<sub>2</sub><sup>+</sup> peak over various carbonate—oxide phase mixtures as a function of literature values of p(CO<sub>2</sub>).

The enthalpy change associated with reaction (5) at the average temperature of the measurement was estimated to be  $\Delta_{r(5)}H_m^0(664 \text{ K}) = (150.2 \pm 3.0) \text{ kJ} \text{ mol}^{-1}$ . The standard molar Gibbs energy of formation ( $\Delta_f G_m^0$ ) of LiAlO<sub>2</sub>(s) from the elements was calculated from Eqs. (5) and (10) and the values of  $\Delta_f G_m^0(T)$  for Li<sub>2</sub>CO<sub>3</sub>(s), Al<sub>2</sub>O<sub>3</sub>(s) and CO<sub>2</sub>(g) from the literature [17] and  $\Delta_f G_m^0(\text{LiAl}_5O_8, \text{ s}, T)$  from Eq. (9) and can be represented as

$$\Delta_{\rm f} G_{\rm m}^0({\rm LiAlO}_2,{\rm s},{\rm T})\,{\rm kJ\,mol}^{-1} = -\,1171.9 + 0.2423\,({\rm T}\,({\rm K})) \\ (\pm 4.0)\,(604 \!\leqslant\! {\rm T}\,({\rm K}) \!\leqslant\! 723) \tag{11}$$

3.1.2.3. The phase mixture { $LiAlO_2(s)+2Li_2CO_3(s)+Li_5AlO_4(s)$ }. The ion intensities of CO<sub>2</sub><sup>+</sup> peak over { $LiAlO_2(s)+2Li_2CO_3(s)+Li_5AlO_4(s)$ } phase mixture was measured at 30 eV ionization energy in the temperature range 614–750 K. Partial pressures of CO<sub>2</sub>(g),  $p(CO_2)$ , at different temperatures for two different runs were calculated using the measured ion intensities, Eq. (6) and the calibration constant from Eq. (7) and the values are listed in Table 2. The variation of logarithmic values of  $p(CO_2)$  as a function of reciprocal of temperature follows linear relationship as shown in Fig. 4 and can be expressed as

$$ln\{p(CO_2 (Pa)) = -28166.5(\pm 544.7)/(T (K)) + 34.97(\pm 0.74)$$
(12)

The enthalpy change associated with reaction (6) at the average temperature of the measurement was estimated to be  $\Delta_{r(6)}H_m^0(739 \text{ K}) = (234.2 \pm 4.5) \text{ kJ mol}^{-1}$ . The standard molar Gibbs

energy of formation ( $\Delta_f G_m^0$ ) of Li<sub>5</sub>AlO<sub>4</sub>(s) from the elements was calculated from Eqs. (6) and (12) and the values of  $\Delta_f G_m^0(T)$  for Li<sub>2</sub>CO<sub>3</sub>(s), Al<sub>2</sub>O<sub>3</sub>(s) and CO<sub>2</sub>(g) from the literature [17] and  $\Delta_f G_m^0$  (LiAlO<sub>2</sub>, s, *T*) from Eq. (11) and can be represented as

$$\Delta_{\rm f} G_{\rm m}^0({\rm Li}_5{\rm AlO}_4,{\rm s},T)\,{\rm kJ\,mol}^{-1} = -2341.3 + 0.4201\,(T\,({\rm K})) \\ (\pm 5.5)\,(672 \leqslant T\,({\rm K}) \leqslant 806) \tag{13}$$

3.2. Emf studies on cells (I)-(IV) using solid-state galvanic cell technique

## 3.2.1. Standardization of solid-state galvanic cell (I)

The reversible emf values obtained at different experimental temperatures for cell (I) are listed in Table 3 and the variation of emf with temperature is shown in Fig. 5. The emf data were least-squares fitted to yield the following linear relation:

$$E(V)(\pm 0.0002) = 0.3956 - 2.1073 \times 10^{-5} (T(K))$$
  
(921  $\leq T(K) \leq 1150$ ) (14)

The half-cell reactions at each electrode can be represented as

$$MgF_{2}(s) + 2e^{-} + 1/2O_{2}(g) = MgO(s) + 2F^{-}$$
(at + ve electrode) (15)

and

$$\begin{aligned} \text{CaO}(s) + 2F^{-} &= \text{CaF}_{2}(s) + 2e^{-} + 1/2 \ \text{O}_{2}(g) \\ (\text{at} - \text{ve electrode}). \end{aligned} \tag{16}$$

The net virtual cell reaction can be represented as

$$MgF_2(s) + CaO(s) = CaF_2(g) + MgO(s).$$
(17)

The Gibbs free energy change for the net cell reaction is calculated from the general relation:

$$\Delta_{\rm r}G^{\rm o} = -nFE \tag{18}$$

#### Table 2

Partial pressures of CO<sub>2</sub>(g) over {LiAl<sub>5</sub>O<sub>8</sub>+Li<sub>2</sub>CO<sub>3</sub>+5Al<sub>2</sub>O<sub>3</sub>}, {LiAl<sub>5</sub>O<sub>8</sub>+5LiAlO<sub>2</sub>+2Li<sub>2</sub>-CO<sub>3</sub>} and {LiAlO<sub>2</sub>+Li<sub>5</sub>AlO<sub>4</sub>+2Li<sub>2</sub>CO<sub>3</sub>} determined from KEQMS as a function of temperature

| Reaction (4) |                                  | Reaction | Reaction (5)                     |       | Reaction (6)                     |  |  |
|--------------|----------------------------------|----------|----------------------------------|-------|----------------------------------|--|--|
| T (K)        | <i>p</i> (CO <sub>2</sub> ) (Pa) | T (K)    | <i>p</i> (CO <sub>2</sub> ) (Pa) | T (K) | <i>p</i> (CO <sub>2</sub> ) (Pa) |  |  |
| Run 1        |                                  |          |                                  |       |                                  |  |  |
| 625          | 0.00614                          | 610      | 0.01612                          | 680   | 0.00128                          |  |  |
| 639          | 0.01224                          | 623      | 0.02957                          | 690   | 0.00234                          |  |  |
| 655          | 0.02622                          | 634      | 0.04840                          | 700   | 0.00420                          |  |  |
| 665          | 0.03991                          | 644      | 0.07466                          | 710   | 0.00741                          |  |  |
| 678          | 0.06389                          | 655      | 0.11849                          | 720   | 0.01287                          |  |  |
| 688          | 0.09048                          | 671      | 0.22572                          | 730   | 0.02202                          |  |  |
| 698          | 0.13369                          | 685      | 0.38709                          | 740   | 0.03713                          |  |  |
| 709          | 0.20509                          | 701      | 0.69819                          | 750   | 0.06173                          |  |  |
| 718          | 0.27984                          | 713      | 1.06802                          | 760   | 0.10127                          |  |  |
| 730          | 0.40107                          | 723      | 1.50569                          | 770   | 0.16401                          |  |  |
| 738          | 0.52235                          | 733      | 2.10282                          | 780   | 0.26237                          |  |  |
| 750          | 0.77532                          | 750      | 3.63553                          | 790   | 0.41474                          |  |  |
|              |                                  |          |                                  | 800   | 0.64813                          |  |  |
| Run 2        |                                  |          |                                  |       |                                  |  |  |
| 614          | 0.00441                          | 604      | 0.00874                          | 672   | 0.00118                          |  |  |
| 629          | 0.00747                          | 616      | 0.01548                          | 684   | 0.00245                          |  |  |
| 649          | 0.01987                          | 626      | 0.02451                          | 696   | 0.00498                          |  |  |
| 665          | 0.03991                          | 636      | 0.03825                          | 706   | 0.00883                          |  |  |
| 676          | 0.06510                          | 642      | 0.04963                          | 716   | 0.01540                          |  |  |
| 688          | 0.09513                          | 652      | 0.07579                          | 726   | 0.02645                          |  |  |
| 699          | 0.15801                          | 662      | 0.11426                          | 736   | 0.04476                          |  |  |
| 709          | 0.24541                          | 669      | 0.15118                          | 746   | 0.07470                          |  |  |
| 720          | 0.37522                          | 679      | 0.22331                          | 756   | 0.12298                          |  |  |
| 732          | 0.58085                          | 692      | 0.36459                          | 766   | 0.19985                          |  |  |
| 743          | 0.89149                          | 697      | 0.43811                          | 776   | 0.32073                          |  |  |
|              |                                  | 706      | 0.60579                          | 786   | 0.50856                          |  |  |
|              |                                  | 719      | 0.96763                          | 796   | 0.79710                          |  |  |
|              |                                  |          |                                  | 806   | 1.23550                          |  |  |
|              |                                  |          |                                  |       |                                  |  |  |

where '*n*' is the total number of electrons involved in the half-cell reactions and '*F* is the Faraday's constant ( $F = 96486.4 \,\mathrm{C \, mol^{-1}}$ ) and '*E*' is the net cell emf in volts. The values of  $\Delta_{r(17)}G^0(T)$  as a function of temperature can be calculated using Eqs. (14) and (18) (n = 2) and is represented by the following expression:

$$\Delta_{r(17)}G^{0}(T) \text{ kJ mol}^{-1}(\pm 0.1) = -76.3 + 0.0041 (T (K))$$
  
(921 \le T (K) \le 1150) (19)

The values of  $\Delta_{r(17)}G^0(T)$  obtained in this study are in good agreement  $(\pm 2.0 \text{ kJ} \text{ mol}^{-1})$  with those calculated using the values of standard molar Gibbs free energy of formations for CaF<sub>2</sub>(s), MgF<sub>2</sub>(s), MgO(s) and CaO(s) from the literature [17].

# 3.2.2. $\Delta_f G^0(T)$ for LiAl<sub>5</sub>O<sub>8</sub>(s)

The reversible emf values obtained at different temperatures from 785 to 1036 K for cell (II) are listed in Table 3 and the variation of emf with temperature is shown in Fig. 5. The half-cell reactions at each electrode can be represented as

$$5Al_2O_3(s) + 2LiF(s) + 2e^- + 1/2O_2(g) = 2LiAl_5O_8(s) + 2F^-$$
  
(at + ve electrode) (20)

 $CaO(s) + 2F^{-} = CaF_{2}(s) + 1/2O_{2}(g) + 2e^{-1}$ 

(at - ve electrode)

Hence, the net cell reaction can be written as

$$5Al_2O_3(s) + CaO(s) + 2LiF(s) = 2LiAl_5O_8(s) + CaF_2(s)$$
(22)

The emf data were least-squares fitted to yield the following linear relation:

Cell (II) : 
$$E(V)(\pm 0.0020) = 0.1820 - 1.5799 \times 10^{-4} (T(K)).$$
  
(785  $\leq T(K) \leq 1036$ ) (23)

The Gibbs free energy change for the equilibrium reaction (22) can be calculated using Eqs. (18) (n = 2) and (23) and is represented as

$$\Delta_{r(22)}G^{0}(T) \text{ kJ mol}^{-1} (\pm 0.02) = -35.1 + 0.0305 (T \text{ (K)})$$

$$(785 \le T \text{ (K)} \le 1036)$$
(24)

The standard molar Gibbs energy of formation  $\Delta_{f}G_{m}^{0}$  (LiAl<sub>5</sub>O<sub>8</sub>, s, *T*) was obtained by using Eqs. (22) and (24) and values of  $\Delta_{f}G_{m}^{0}(T)$ 



Fig. 4. Partial pressure of CO<sub>2</sub>(g) for reactions (4)-(6) as a function of temperature for two experimental runs with same phase mixtures.

(21)

for  $Al_2O_3(s)$ , CaO(s), LiF(s) and  $CaF_2(s)$  from literature [17] and represented as

$$\Delta_{\rm f} G_{\rm m}^0(T) \, \text{kJ} \, \text{mol}^{-1} \, (\pm 2.9) = -4545.0 + 0.8818 \, (T \, (\text{K})) (785 \leqslant T \, (\text{K}) \leqslant 1036).$$
(25)

3.2.3.  $\Delta_f G^0(T)$  for LiAlO<sub>2</sub>(s)

The reversible emf values obtained at different experimental temperatures for cell (III) are listed in Table 3 and the variation of

 Table 3

 Variation of emf as a function of temperature for cells (I)-(IV)

| Cell (I) |        | Cell (II) | 1      | Cell (III | Cell (III) |       | Cell (IV)    |  |
|----------|--------|-----------|--------|-----------|------------|-------|--------------|--|
| T (K)    | E (V)  | T (K)     | E (V)  | T (K)     | E (V)      | T (K) | <i>E</i> (V) |  |
| 921      | 0.3762 | 785       | 0.0591 | 719       | 0.0107     | 734   | 0.2077       |  |
| 941      | 0.3758 | 793       | 0.0565 | 734       | 0.0157     | 747   | 0.2068       |  |
| 960      | 0.3754 | 803       | 0.0544 | 748       | 0.0169     | 756   | 0.2043       |  |
| 982      | 0.3749 | 813       | 0.0529 | 760       | 0.0217     | 769   | 0.2038       |  |
| 1000     | 0.3746 | 826       | 0.0535 | 771       | 0.0244     | 777   | 0.2011       |  |
| 1019     | 0.3741 | 833       | 0.0496 | 780       | 0.0260     | 789   | 0.2000       |  |
| 1042     | 0.3736 | 842       | 0.0494 | 790       | 0.0289     | 795   | 0.1991       |  |
| 1060     | 0.3733 | 854       | 0.0465 | 801       | 0.0329     | 807   | 0.1974       |  |
| 1072     | 0.3730 | 864       | 0.0458 | 811       | 0.0338     | 819   | 0.1953       |  |
| 1088     | 0.3727 | 873       | 0.0437 | 819       | 0.0365     | 832   | 0.1935       |  |
| 1101     | 0.3724 | 885       | 0.0395 | 829       | 0.0381     | 843   | 0.1927       |  |
| 1122     | 0.3720 | 894       | 0.0407 | 837       | 0.0437     |       |              |  |
| 1134     | 0.3717 | 905       | 0.0369 | 850       | 0.0430     |       |              |  |
| 1150     | 0.3714 | 913       | 0.0382 | 866       | 0.0469     |       |              |  |
|          |        | 923       | 0.0349 | 871       | 0.0504     |       |              |  |
|          |        | 933       | 0.0362 | 882       | 0.0505     |       |              |  |
|          |        | 942       | 0.0330 | 890       | 0.0534     |       |              |  |
|          |        | 956       | 0.0330 | 900       | 0.0548     |       |              |  |
|          |        | 961       | 0.0300 | 908       | 0.0553     |       |              |  |
|          |        | 971       | 0.0328 | 920       | 0.0576     |       |              |  |
|          |        | 984       | 0.0265 | 929       | 0.0591     |       |              |  |
|          |        | 993       | 0.0300 |           |            |       |              |  |
|          |        | 1000      | 0.0200 |           |            |       |              |  |
|          |        | 1009      | 0.0266 |           |            |       |              |  |
|          |        | 1015      | 0.0191 |           |            |       |              |  |
|          |        | 1036      | 0.0141 |           |            |       |              |  |

emf with temperature is shown in Fig. 5. The half-cell reactions at each electrode can be represented as

$$2CaO(s) + 4F^{-} = 2CaF_{2}(s) + O_{2}(g) + 4e^{-}$$
  
(at - ve electrode) (27)

Hence, the net cell reaction can be written as

$$LiAl_5O_8(s) + 2CaO(s) + 4LiF(s) = 5LiAlO_2(s) + 2CaF_2(s)$$
(28)

The emf data were least-squares fitted to yield the following linear relation:

Cell (III) : 
$$E(V)(\pm 0.0020) = -0.1569 + 2.3522 \times 10^{-4} (T(K)).$$
  
(719 $\leq T(K) \leq 929$ ) (29)

The Gibbs free energy change for the equilibrium reaction (28) can be calculated using Eqs. (18) (n = 4) and (29) and is represented as

$$\Delta_{r(28)}G^{0}(T) \text{ kJ mol}^{-1}(\pm 0.7) = 60.6 - 0.0908 (T (K))$$

$$(719 \leq T (K) \leq 929). \tag{30}$$

The standard molar Gibbs energy of formation  $\Delta_f G_m^0$  (LiAlO<sub>2</sub>, s, *T*) was obtained by using Eqs. (28) and (30) and values of  $\Delta_f G_m^0(T)$  for LiAl<sub>5</sub>O<sub>8</sub>(s) from Eq. (25), CaO(s), LiF(s) and CaF<sub>2</sub>(s) from literature [17] and represented as

$$\Delta_{f} G_{m}^{U}(T) \, \text{kJ} \, \text{mol}^{-1}(\pm 4.5) = -1157.8 + 0.2118 \, (T \, (\text{K})) (719 \leqslant T \, (\text{K}) \leqslant 929).$$
(31)

# 3.2.4. $\Delta_f G^0(T)$ for $Li_5 AlO_4(s)$

The reversible emf values obtained at different experimental temperatures for cell (IV) are listed in Table 3 and the variation of



Fig. 5. Emf values of cells (I)-(IV) as a function of temperature.

(33)

emf with temperature is shown in Fig. 5. The half-cell reactions at each electrode can be represented as

$$CaF_{2}(s) + 1/2O_{2}(g) + 2e^{-} = CaO(s) + 2F^{-}$$
  
(at + ve electrode) (32)

 $\label{eq:LisAlO_4(s) + 4F^- = LiAlO_2(s) + 4LiF(s) + O_2(g) + 4e^-} \\ (at - ve \ electrode)$ 

Hence, the net cell reaction can be written as

$$Li_5AlO_4(s) + 2CaF_2(s) = LiAlO_2(s) + 2CaO(s) + 4LiF(s)$$
(34)

The emf data were least-squares fitted to yield the following linear relation:

Cell (IV) : 
$$E(V)(\pm 0.0006) = 0.3145 - 1.4517 \times 10^{-4} (T(K)).$$
  
(734  $\leq T(K) \leq 843$ ) (35)

The Gibbs free energy change for the equilibrium reaction (34) can be calculated using Eqs. (18) (n = 4) and (35) and is represented as

$$\Delta_{r(34)}G^{0}(T) \text{ kJ mol}^{-1}(\pm 0.2) = -121.4 + 0.0560 (T \text{ (K)})$$
(734 \le T (K) \le 843). (36)

The standard molar Gibbs energy of formation  $\Delta_f G_m^0$  (Li<sub>5</sub>AlO<sub>4</sub>, s, *T*) was obtained by using Eqs. (34) and (36) and values of  $\Delta_f G_m^0(T)$  for LiAlO<sub>2</sub>(s) from Eq. (31) and that of CaO(s), LiF(s), and CaF<sub>2</sub>(s) from literature [17] and represented as

$$\Delta_{\rm f} G_{\rm m}^0(T) \, \text{kJ} \, \text{mol}^{-1}(\pm 5.6) = -2341.2 + 0.4240 \, (T \, \text{(K)}) (734 \leqslant T \, \text{(K)} \leqslant 843).$$
(37)

3.3. Comparison of Gibbs energies of formation of  $LiAl_5O_8(s)$ ,  $LiAlO_2(s)$  and  $Li_5AlO_4(s)$  determined using KEQMS and solid-state galvanic cell

The values of standard molar Gibbs energies of formation of  $LiAl_5O_8(s)$ ,  $LiAlO_2(s)$  and  $Li_5AlO_4(s)$  determined from KEQMS and solid-state galvanic cell techniques are plotted as a function of temperature and shown in Fig. 6. The figure shows that values of

 $\Delta_f G^0_m(T)$  are in close agreement and can be safely extrapolated to the entire temperature range. Thus, simultaneous use of KEQMS and solid-state galvanic cell study increases the experimental temperature range.

# 3.4. Measurement of heat capacities of ternary oxides of the system Li–Al– ${\rm O}$

The isobaric molar heat capacities of LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and  $Li_5AlO_4(s)$  as a function of temperature were measured from (i) 127 to 308 and (ii) 308-868 K. The variation of heat capacities of these ternary oxides in per gram-atom were plotted as a function of temperature and shown in Fig. 7. The figure shows that heat capacity for LiAlO<sub>2</sub>(s) in per gram-atom is more compared to other two ternary oxides and can be effectively used as blanket material for breeding in nuclear reactors. Kleykamp [8] has already reported the heat capacity data of LiAlO<sub>2</sub>(s) from 298 to 1700 K. Heat capacity values of LiAlO<sub>2</sub>(s) determined from DSC studies are in close agreement with that of literature [8]. However, literature on heat capacity values of LiAl<sub>5</sub>O<sub>8</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s) and lowtemperature heat capacity values of ternary aluminates are not available. The individual values of heat capacities were fitted as a function of temperature in low and high-temperature ranges and are represented as

(a) 127-298 K

$$C_{p,m}^{o}(\text{LiAl}_{5}O_{8})\text{J}\text{K}^{-1}\text{mol}^{-1} = -130.2 + 1.6994 (T (K)) - 0.0018(T (K))^{2}$$
(38)

$$C_{p,m}^{o}(\text{LiAlO}_2) J K^{-1} mol^{-1} = -45.2 + 0.6948 (T (K)) - 0.0010(T (K))^2$$
(39)

$$C_{p,m}^{0}(\text{LiAl}_{5}O_{4})\text{J}\text{K}^{-1}\text{mol}^{-1} = -48.2 + 1.2035 (T (K)) - 0.0016 (T (K))^{2}$$
(40)



Fig. 6. Comparison of  $\Delta_f G_m^0$  of ternary oxides determined from KEQMS and solid-state galvanic cell techniques: (O) KEQMS, ( $\blacksquare$ ) solid-state galvanic cell and solid line: combined fit of both the experimental data.



Fig. 7. Specific heat of ternary oxides in per gram-atom as a function of temperature.

# Table 4

 $\Delta_{\rm f} H^0_{\rm m}(298.15\,{\rm K})$  of lithium aluminates

| Compound                                       | $\Delta_{\rm f} H_{\rm m}^0(298.15{\rm K}){\rm kJmol^{-1}}$ | $\Delta_{\rm f} H_{\rm m}^0(298.15{\rm K}){\rm kJmol^{-1}}$ |                               |                                              |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|----------------------------------------------|--|--|--|--|
|                                                | KEQMS (second law)                                          | KEQMS (third law)                                           | Galvanic cell (second law)    | Literature                                   |  |  |  |  |
| $LiAl_5O_8(s)$<br>$LiAlO_2(s)$<br>$LiAlO_2(s)$ | -4517.2<br>-1190.5<br>2260.2                                | -4487.8<br>-1187.2<br>2417.1                                | -4535.9<br>-1176.4<br>-2260.1 | -4577.5 [18]<br>-1190.0 [17]<br>-2201.0 [18] |  |  |  |  |

(b) 308-868 K

$$C_{p,m}^{o}(\text{LiAl}_{5}O_{8}) J K^{-1} \text{ mol}^{-1} = 258.3 + 0.0734 (T (K)) - 5749075.9 (T (K))^{-2}$$
(41)

$$C_{p,m}^{0}(\text{LiAlO}_{2}) J K^{-1} \text{ mol}^{-1} = 82.1 + 0.0344 (T (K)) - 184270.1 (T (K))^{-2}$$
(42)

$$C_{p,m}^{o}(\text{Li}_{5}\text{AlO}_{4}) \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1} = 161.2 + 0.1462 \, (T \, (\text{K})) \\ - 2851348.0 \, (T \, (\text{K}))^{-2}$$
(43)

#### 3.5. Thermo-chemical stabilities of lithium aluminates

Guggi et al. [19] have discussed the thermal stability of these ternary aluminates and reported the heats of formation from the constituent oxides for one mole of Li<sub>2</sub>O. Ikeda et al. [1] have determined the heats of formation of these oxides from the elements at 298.15 K,  $\Delta_f H^0$ (298.15 K), using their high-temperature vaporization studies. In this study, same has been calculated using solid-state galvanic cell and Knudsen effusion mass spectrometric data. These values are in close agreement with that of Guggi et al. [19] and Ikeda et al. [1] and tabulated in Table 4.

# 3.6. Construction of thermodynamic table for ternary oxides of Li–Al– O system

The Gibbs energies of formation of LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s) and  $Li_5AlO_4(s)$  obtained from KEQMS {Eqs. (11)–(13)} and galvanic cell techniques {Eqs. (25), (31) and (37)} were used for second law analysis to determine the standard molar enthalpy of formation,  $\Delta_{\rm f} H_{\rm m}^0(298.15\,{\rm K})$  and the standard molar entropies  $S_{\rm m}^0(298.15\,{\rm K})$ . Isobaric molar heat capacities from Eqs. (41)-(43) and standard molar Gibbs energies of formation for  $LiAl_5O_8(s)$ ,  $LiAlO_2(s)$  and Li<sub>5</sub>AlO<sub>4</sub>(s) from Eqs. (11)-(13) and (25), (31) and (37) were used as primary data for second law analysis and extrapolated to 1000 K as required. The partial pressure data obtained from KEMQS technique at each experimental temperature were treated by the third law method to derive the values of  $\Delta_{\rm f} H^0$  (298.15 K). It was observed that for LiAl<sub>5</sub>O<sub>8</sub>(s), LiAlO<sub>2</sub>(s), the values of  $\Delta_{\rm f} H^0$ (298.15 K) obtained by second and third law treatment are in good agreement with that of literature [1,18]. However, for Li<sub>5</sub>AlO<sub>4</sub>(s), the values obtained by the third law method are more negative compared to second law value. For construction of thermodynamic tables for ternary oxides, average values of  $\Delta_{\rm f} H^0(298.15 \, {\rm K})$ obtained from second law analysis of this study and that of

| Table 5       |           |         |          |                |
|---------------|-----------|---------|----------|----------------|
| Thermodynamic | functions | for the | compound | $LiAl_5O_8(s)$ |

| T (K)  | $C_p^0 (J K^{-1} mol^{-1})$ | $H^0$ (kJ mol <sup>-1</sup> ) | $G^0$ (kJ mol <sup>-1</sup> ) | $S^0$ (J K <sup>-1</sup> mol <sup>-1</sup> ) | $H_{\rm T}^0 - H_{298.15}^0 ({\rm Jmol^{-1}})$ | fef (J K <sup><math>-1</math></sup> mol <sup><math>-1</math></sup> ) | $\Delta_{\rm f} H^0  (\rm kJ  mol^{-1})$ | $\Delta_{\rm f} G^0 \ ({\rm kJ}  { m mol}^{-1})$ |
|--------|-----------------------------|-------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------|
| 298.15 | 216.4                       | -4541.6                       | -4587.9                       | 155.2                                        | 0                                              | 155.2                                                                | -4541.6                                  | -4292.5                                          |
| 300    | 216.5                       | -4541.2                       | -4588.4                       | 157.4                                        | 400                                            | 156.1                                                                | -4541.7                                  | -4291.2                                          |
| 350    | 237.1                       | -4529.8                       | -4597.1                       | 192.4                                        | 11,800                                         | 158.7                                                                | -4543.6                                  | -4249.2                                          |
| 400    | 251.7                       | -4517.6                       | -4607.6                       | 225.1                                        | 24,000                                         | 165.1                                                                | -4545.1                                  | -4207.1                                          |
| 450    | 262.9                       | -4504.7                       | -4619.6                       | 255.4                                        | 36,900                                         | 173.4                                                                | -4546.2                                  | -4164.8                                          |
| 500    | 272.0                       | -4491.3                       | -4633.1                       | 283.6                                        | 50,300                                         | 183.0                                                                | -4550.2                                  | -4122.0                                          |
| 550    | 279.7                       | -4477.5                       | -4648.0                       | 309.9                                        | 64,100                                         | 193.4                                                                | -4550.9                                  | -4079.2                                          |
| 600    | 286.4                       | -4463.4                       | -4664.1                       | 334.5                                        | 78,200                                         | 204.2                                                                | -4551.6                                  | -4036.3                                          |
| 650    | 292.4                       | -4448.9                       | -4681.4                       | 357.7                                        | 92,700                                         | 215.1                                                                | -4552.1                                  | -3993.3                                          |
| 700    | 297.9                       | -4434.2                       | -4699.9                       | 379.6                                        | 107,400                                        | 226.2                                                                | -4552.7                                  | -3950.4                                          |
| 750    | 303.1                       | -4419.1                       | -4719.3                       | 400.3                                        | 122,500                                        | 237.0                                                                | -4553.1                                  | -3907.3                                          |
| 800    | 308.0                       | -4403.8                       | -4739.8                       | 420.0                                        | 137,800                                        | 247.8                                                                | -4553.6                                  | -3864.2                                          |
| 850    | 312.7                       | -4388.3                       | -4761.4                       | 438.9                                        | 153,300                                        | 258.5                                                                | -4554.2                                  | -3821.2                                          |
| 900    | 317.3                       | -4372.6                       | -4783.8                       | 456.9                                        | 169,000                                        | 269.1                                                                | -4555.0                                  | -3778.1                                          |
| 950    | 321.7                       | -4356.6                       | -4807.0                       | 474.1                                        | 185,000                                        | 279.4                                                                | -4609.1                                  | -3733.8                                          |
| 1000   | 325.9                       | -4340.4                       | -4831.1                       | 490.7                                        | 201,200                                        | 289.5                                                                | -4609.2                                  | -3687.8                                          |

\* Estimated values of Cp.

Table 6Thermodynamic functions for the compound  $Li_5AIO_4(s)$ 

| T (K)  | $C_{p}^{0}$ (J K <sup>-1</sup> mol <sup>-1</sup> ) | $H^0$ (kJ mol <sup>-1</sup> ) | $G^0$ (kJ mol <sup>-1</sup> ) | $S^0$ (J K <sup>-1</sup> mol <sup>-1</sup> ) | $H_{\rm T}^0 - H_{298.15}^0 ({\rm J}{ m mol}^{-1})$ | $\mathrm{fef}(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$ | $\Delta_{\rm f} H^0  (\rm kJ  mol^{-1})$ | $\Delta_{\rm f} G^0  (\rm kJ  mol^{-1})$ |
|--------|----------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------|------------------------------------------|
| 298.15 | 168.4                                              | -2379.8                       | -2418.1                       | 128.6                                        | 0                                                   | 128.6                                                      | -2379.8                                  | -2244.0                                  |
| 300    | 173.6                                              | -2379.5                       | -2418.4                       | 129.6                                        | 300                                                 | 128.6                                                      | -2379.9                                  | -2243.2                                  |
| 350    | 189.3                                              | -2370.4                       | -2425.6                       | 157.6                                        | 9400                                                | 130.7                                                      | -2381.3                                  | -2220.3                                  |
| 400    | 202.1                                              | -2360.6                       | -2434.1                       | 183.8                                        | 19,200                                              | 135.8                                                      | -2382.4                                  | -2197.2                                  |
| 450    | 213.1                                              | -2350.2                       | -2443.9                       | 208.2                                        | 29,600                                              | 142.4                                                      | -2383.5                                  | -2174.0                                  |
| 500    | 223.1                                              | -2339.3                       | -2454.9                       | 231.2                                        | 40,500                                              | 150.2                                                      | -2399.6                                  | -2149.1                                  |
| 550    | 232.4                                              | -2327.9                       | -2467.0                       | 252.9                                        | 51,900                                              | 158.5                                                      | -2400.2                                  | -2124.0                                  |
| 600    | 241.2                                              | -2316.1                       | -2480.2                       | 273.5                                        | 63,700                                              | 167.3                                                      | -2400.4                                  | -2098.9                                  |
| 650    | 249.7                                              | -2303.8                       | -2494.3                       | 293.1                                        | 76,000                                              | 176.2                                                      | -2400.1                                  | -2073.8                                  |
| 700    | 257.9                                              | -2291.1                       | -2509.4                       | 311.9                                        | 88,700                                              | 185.2                                                      | -2399.4                                  | -2048.7                                  |
| 750    | 265.9                                              | -2278.0                       | -2525.5                       | 330.0                                        | 101,800                                             | 194.3                                                      | -2398.4                                  | -2023.7                                  |
| 800    | 273.9                                              | -2264.5                       | -2542.4                       | 347.4                                        | 115,300                                             | 203.3                                                      | -2397.1                                  | -1998.7                                  |
| 850    | 281.7                                              | -2250.6                       | -2560.3                       | 364.3                                        | 129,200                                             | 212.3                                                      | -2395.4                                  | -1973.9                                  |
| 900    | 289.5                                              | -2236.3                       | -2578.8                       | 380.6                                        | 143,500                                             | 221.3                                                      | -2393.4                                  | -1949.1                                  |
| 950    | 297.1                                              | -2221.7                       | -2598.3                       | 396.4                                        | 158,100                                             | 230.0                                                      | -2401.8                                  | -1924.3                                  |
| 1000   | 304.8                                              | -2206.6                       | -2618.5                       | 411.9                                        | 173,200                                             | 238.7                                                      | -2399.0                                  | -1899.3                                  |

\* Estimated values of C<sub>p</sub>.

literature were used as primary data. Thermodynamic table includes the basic functions such as:  $\Delta_r H^0(298.15 \text{ K})$ ,  $S^0(298.15 \text{ K})$ ,  $S^0(T)$ ,  $C_p^0(T)$ ,  $H^0(T)$ ,  $\{H^0(T)-H^0(298.15 \text{ K})\}$ ,  $G^0(T)$ ,  $\Delta_r H^0(T)$ ,  $\Delta_r G^0(T)$  and free energy function (fef) which were calculated using 'FACTSAGE thermo-chemical database' software [18]. The molar heat capacity values of Li(s), Al(s) and O<sub>2</sub>(g) required for the second law analysis have been taken from the 'FACTSAGE thermo-chemical database' [18] and the thermodynamic values of the most stable phases were used. After calculation of all the thermodynamic functions, the values obtained at selected temperatures from 298 to 1000 K are tabulated and are given in Tables 5 and 6 for LiAl<sub>5</sub>O<sub>8</sub>(s) and Li<sub>5</sub>AlO<sub>4</sub>(s), respectively. Thermodynamic table for LiAlO<sub>2</sub>(s) is already available in literature [18] hence it was not constructed in this study.

## 4. Conclusion

Standard molar Gibbs energies of formation of  $LiAl_5O_8(s)$ , LiAlO<sub>2</sub>(s) and  $Li_5AlO_4(s)$  evaluated from KEQMS and solid-state galvanic cell techniques. This study shows that RGA based on quadrupole mass spectrometer can effectively produce reliable thermodynamic data using Knudsen effusion mass spectrometric technique on proper calibration. However, the present system is only suitable for partial pressure measurements of permanent gaseous species.

### Acknowledgment

The authors gratefully acknowledge the help of Dr. K. Krishnan from Fuel Chemistry Division, BARC for X-ray diffraction analysis.

## References

- [1] Y. Ikeda, H. Ito, G. Matsumoto, J. Nucl. Mater. 97 (1981) 47.
- [2] A. La Ginestra, M. Lo Jacono, P. Porta, J. Thermal Anal. 4 (1972) 5.
- [3] W. Heyi, Z. Jumke, L. Yangming, J. Nucl. Mater. 208 (1994) 195.
- [4] J.N. Singh, J.T. Dusek, J.W. Sim, Ceram. Bull. 60 (6) (1981) 629.
- [5] F.M. Gray, in: Polymer Electrolyte, R.C.S. Materials Monographs, The Royal Society of Chemistry, Cambridge, 1977.
- [6] F. Okasuzomer, S. Naci Koc, I. Boz, M. Ali Gurkayank, Mater. Res. Bull. 39 (2004) 715.
- [7] R.A. Ribeiro, G.G. Silva, N.D.S. Mohallem, J. Phys. Chem. Solids 62 (2001) 857.
- [8] H. Kleykamp, J. Nucl. Mater. 270 (1999) 372.
- [9] G.A. Murray, R.A. Kematick, C.E. Myers, High Temp. Sci. 26 (1990) 4.
- [10] V.L. Stolyarova, D.U. Sichen, S. Seetharaman, Vacuum 46 (8–10) (1995) 871.
- [11] J.A. Basford, M.D. Boeckmann, R.E. Ellefson, A.R. Filippelli, D.H. Holkeboer, L. Lieszkovszky, C.M. Stupak, J. Vac. Sci. Technol. A 11 (3) (1993) A22.

- [12] M.C. Cowen, W. Allison, J.H. Batey, J. Vac. Sci. Technol. A 12 (1) (1994) 228.
- [13] M.G. Rao, C. Dong, J. Vac. Sci. Technol. A 15 (3) (1997) 1312.
   [14] J.B. Mann, J. Chem. Phys. 46 (1967) 1646.

- [15] J. Huang, T. Furkawa, K. Aoto, J. Chem. Thermodyn. 38 (2006) 1.
  [16] S.K. Rakshit, S.C. Parida, S. Dash, Z. Singh, B.K. Sen, V. Venugopal, J. Solid State Chem. 180 (2007) 523.
- [17] M.W. Chase Jr., JANAF thermochemical tables, 4th ed, J. Phys. Chem. Ref. Data 23 (1995) Monograph No. 9.
- [18] FactSage, version 5.3.1, Thermo-Chemical Database Software, Thermfact, GTT Technologies, Germany, 1976–2004. [19] D. Guggi, H.R. Ihle, A. Neubert, in: Proceedings of the 9th Symposium on
- Fusion Technology, Garmisch-Partenkirchen, Fed. Rep. Germany, Pergamon, Oxford, 1976.